Of particular interest to the SuperDARN community is the focus on generation of the ring current, which can also be studied in its ionospheric manifestations by the mid-latitude radars: Quoting directly from the EOS Buzz article:

Ring Current Generation

The buildup of the intermediate energetic ion population (reaching keV) during geomagnetic storms creates a source of hot plasma pressure in the inner magnetosphere that drives the so-called global “ring current” system that encircles Earth. This ring current controls the magnetic field configuration, which in turn governs the motion of radiation belt particles. Energetic ions also provide the energy source for an array of different wave modes that play a significant role in radiation belt particle acceleration and loss.

A surprising discovery of the Van Allen Probes prime mission was that a substantial fraction of hot plasma pressure is produced by dynamic small-scale injections that rapidly (in a matter of minutes) transport hot particles radially into the inner magnetosphere. Such injections were known to be common within the magnetotail but were previously thought to be infrequent in the inner magnetosphere.

The structure and occurrence rate of the injections remain unknown, and the amount of hot plasma transported remains poorly quantified. The extended mission will quantify the properties of small-scale injections in the inner magnetosphere and explore their role in the buildup of hot plasma pressure during storms. This investigation will be greatly facilitated by the recent adjustment of the spacecraft’s orbits, which doubled the cadence of simultaneous two-point, radial-aligned measurements, necessary to quantify the properties of dynamic injections.